Geometri Euclid
Geometri Euclid merupakan sebuah sistem matematik yang disumbangkan oleh seorang ahli matematik Yunani bernama Euclid dari Alexandria. Teks Euclid, Elements merupakan sebuah kajian sistematik yang terawal mengenai geometri. Ia sudah menjadi salah satu buku-buku yang paling berpengarh di dalam sejarah, sama banyaknya dengan kaedahnya yang mempunyai isi kandungan matematik. Kaedah cara yang mengandungi andaian satu set aksiom secara intuitif yang sangat menarik, dan kemudiannya membuktikan banyak usul (teorem-teorem) daripada aksiom-aksiom berkenaan. Walaupun banyak daripada keputusan-keputusan oleh Euclid sudah dinyatakan oleh ahli-ahli matematik Yunani sebelumnya, Euclid merupakan orang yang pertama untuk menunjukkan bagaimana usul-usul ini diletakkan secara sempurna membentuk satu deduksi dan sistem logikyang komprehensif.
Buku Elements ini bermula dengan geometri satah, yang masih lagi diajar di sekolah menengah sebagai satu sistem aksioman dan contoh-contoh pembuktian formal yang pertama. Kemudiannya, Elements merangkumi geometri pepejal dalam tiga dimensi, dan seterusnya geometri Euclid telah dipanjangkan kepada satu bilangan dimensi yang terhingga. Kebanyakan daripada Elements menyatakan keputusan-keputusan dalam apa yang kini disebut sebagai teori nombor, yang boleh dibuktikan menerusi kaedah geometri.
Selama dua ribu tahun, kata adjektif “Euclid” tidak diperlukan kerana pada masa itu tiada geometri lain dapat dibayangkan. Aksiom-aksiom Euclid nampak seperti sangat jelas sehinggakan apa-apa teorem lain yang dibuktikan daripadanya dianggap benar secara mutlak. Hari ini, bagaimanapun, banyak geometri bukan Euclid sudah diketahui, yang pertamanya telah dijumpai pada awal abad ke-19. Ia juga tidak boleh diambil mudah bahawa geometri Euclid hanya menggambarkan ruang fizikal. Satu implikasi daripada teori Einstein mengenai teori kerelatifan umum bahawa geometri Euclid merupakan satu anggaran yang baik kepada sifat-sifat ruang fizikal hanyak sekiranya medan graviti tidak terlalu kuat.
Pendekatan aksioman
- Apa-apa dua titik boleh dihubungkan dengan satu garis lurus.
- Apa-apa tembereng garis lurus boleh dipanjangkan di dalam satu garis lurus.
- Satu bulatan boleh dilukis dengan menggunakan satu garis lurus sebagai jejari dan satu lagi titik hujung sebagai pusat.
- Semua sudut serenjang adalah kongruen.
- Postulat selari. Jika dua garis bersilangan dengan yang ketiga dalam satu cara yang jumlah sudut dalaman adalah kurang daripada satu lagi, maka dua garis ini mesti bersilangan di atas satu sama lain sekiranya dipanjangkan secukupnya.
Satu bukti daripada buku Euclid “Elements” bahawa apabila diberikan
satu tembereng garis, satu segitiga sama wujud termasuklah tembereng
sebagai salah satu daripada tiga sisi. Buktinya adalah dengan cara
binaan: Satu segitiga sama ΑΒΓ dibuat dengan melukis bulatan Δ dan Ε
berpusat pada titik-titik Α dan Β, dan dengan mengambil satu persilangan
bulatan sebagai puncak sudut ketiga bagi segitiga tersebut.
Menerusi satu titik yang tidak terletak di atas satu garis lurus, hanya satu sahaja garis yang boleh dilukis tidak akan bertemu garis yang diberi.Postulat-postulat 1, 2, 3, dan 5 menegaskan bahawa kewujudan dan keunikan rajah-rajah geometri, dan peegasan ini adalah satu binaan semulajadi: iaitu, kita tidak diberitahu bahawa ada perkara tertentu wujud, tetapi kaedah-kaedah diberi untuk mencipta dengan tidak lebih daripada satu kompas dan satu pinggiran lurus yang tidak bertanda. Dalam kes ini, geometri Euclid adalah lebih konkrit daripada kebanyakan sistem-sistem aksiom moden seperti teori set, yang mana kebiasaannya menegaskan kewujudan objek-objek tanpa mengatakan bagaimana untuk membina mereka, atau menegaskan kewujudan objek-objek yang tidak boleh dibina di dalam ruang teori berkenaan.
Sebenarnya, binaan-binaan garis di atas kertas dan sebagainya adalah model-model objek yang lebih baik ditakrifkan di dalam sistem formal, daripada hanya contoh-contoh objek berkenaan. Sebagai contoh, satu garis lurus Euclid tidak mempunyai lebar, tetapi apa-apa garis yang benar akan menjadi lebar.
Elements juga memasukkan lima “notasi biasa”:
- Perkara yang sama dengan benda yang sama tetapi juga setara antara satu sama lain.
- Jika setara ditambahkan kepada persamaan, maka jumlah keseluruhan juga adalah setara.
- Jika setara ditolak daripada persamaan, maka bakinya juga adalah setara.
- Perkara yang bertembung di antara satu sama lain juga setara antara satu sama lain that coincide with one another equal one another.
- Jumlah keseluruhan juga lebih besar daripada bahagian berkenaan.