Sejarah Teori Bilangan

 

Teori adalah serangkaian bagian atau variabel, definisi, dan dalil yang saling berhubungan yang menghadirkan sebuah pandangan sistematis mengenai fenomena dengan menentukan hubungan antar variabel, dengan menentukan hubungan antar variabel, dengan maksud menjelaskan fenomena alamiah. Labovitz dan Hagedorn mendefinisikan teori sebagai ide pemikiran “pemikiran teoritis” yang mereka definisikan sebagai “menentukan” bagaimana dan mengapa variable-variabel dan pernyataan hubungan dapat saling berhubungan.
Kata teori memiliki arti yang berbeda-beda pada bidang-bidang pengetahuan yang berbeda pula tergantung pada metodologi dan konteks diskusi. Secara umum, teori merupakan analisis hubungan antara fakta yang satu dengan fakta yang lain pada sekumpulan fakta-fakta . Selain itu, berbeda dengan teorema, pernyataan teori umumnya hanya diterima secara “sementara” dan bukan merupakan pernyataan akhir yang konklusif. Hal ini mengindikasikan bahwa teori berasal dari penarikan kesimpulan yang memiliki potensi kesalahan, berbeda dengan penarikan kesimpulan pada pembuktian matematika.
Dalam ilmu pengetahuan, teori dalam ilmu pengetahuan berarti model atau kerangka pikiran yang menjelaskan fenomena alami atau fenomena sosial tertentu. Teori dirumuskan, dikembangkan, dan dievaluasi menurut metode ilmiah. Teori juga merupakan suatu hipotesis yang telah terbukti kebenarannya. Manusia membangun teori untuk menjelaskan, meramalkan, dan menguasai fenomena tertentu (misalnya, benda-benda mati, kejadian-kejadian di alam, atau tingkah laku hewan). Sering kali, teori dipandang sebagai suatu model atas kenyataan (misalnya : apabila kucing mengeong berarti minta makan). Sebuah teori membentuk generalisasi atas banyak pengamatan dan terdiri atas kumpulan ide yang koheren dan saling berkaitan.
Istilah teoritis dapat digunakan untuk menjelaskan sesuatu yang diramalkan oleh suatu teori namun belum pernah terpengamatan. Sebagai contoh, sampai dengan akhir-akhir ini, lubang hitam dikategorikan sebagai teoritis karena diramalkan menurut teori relativitas umum tetapi belum pernah teramati di alam. Terdapat miskonsepsi yang menyatakan apabila sebuah teori ilmiah telah mendapatkan cukup bukti dan telah teruji oleh para peneliti lain tingkatannya akan menjadi hukum ilmiah. Hal ini tidaklah benar karena definisi hukum ilmiah dan teori ilmiah itu berbeda. Teori akan tetap menjadi teori, dan hukum akan tetap menjadi hukum.
Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks.
Teori bilangan
Secara tradisional, teori bilangan adalah cabang dari matematika murni yang mempelajari sifat-sifat bilangan bulat dan mengandung berbagai masalah terbuka yang dapat mudah mengerti sekalipun bukan oleh ahli matematika.
Dalam teori bilangan dasar, bilangan bulat dipelajari tanpa menggunakan teknik dari area matematika lainnya. Pertanyaan tentang sifat dapat dibagi, algoritma Euklidean untuk menghitung faktor persekutuan terbesar, faktorisasi bilangan bulat dalam bilangan prima, penelitian tentang bilangan sempurna dan kongruensi dipelajari di sini.
SEJARAH TEORI BILANGAN
Gambaran sejarah purbakala dari Matematika
Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama.
Sejarah menunjukkan bahwa permulaan Matematika berasal dari bangsa yang bermukim sepanjang aliran sungai tersebut. Mereka memerlukan perhitungan, penanggalan yang bisa dipakai sesuai dengan perubahan musim. Diperlukan alat-alat pengukur untuk mengukur persil-persil tanah yang dimiliki. Peningkatan peradaban memerlukan cara menilai kegiatan perdagangan, keuangan dan pemungutan pajak. Untuk keperluan praktis itu diperlukan bilangan-bilangan.
Awal Bilangan
Bilangan pada awalnya hanya dipergunakan untuk mengingat jumlah, namun dalam perkembangannya setelah para pakar matematika menambahkan perbendaharaan simbol dan kata-kata yang tepat untuk mendefenisikan bilangan maka matematika menjadi hal yang sangat penting bagi kehidupan dan tak bisa kita pungkiri bahwa dalam kehidupan keseharian kita akan selalu bertemu dengan yang namanya bilangan, karena bilangan selalu dibutuhkan baik dalam teknologi, sains, ekonomi ataupun dalam dunia musik, filosofi dan hiburan serta banyak aspek kehidupan lainnya.
Bilangan dahulunya digunakan sebagai symbol untuk menggantikan suatu benda misalnya kerikil, ranting yang masing-masing suku atau bangsa memiliki cara tersendiri untuk
Perkembangan Teori Bilangan
Teori Bilangan Pada suku Babilonia
Matematika Babilonia merujuk pada seluruh matematika yang dikembangkan oleh bangsa Mesopotamia (kini Iraq) sejak permulaan Sumeria hingga permulaan peradaban helenistik. Dinamai “Matematika Babilonia” karena peran utama kawasan Babilonia sebagai tempat untuk belajar. Pada zaman peradaban helenistik, Matematika Babilonia berpadu dengan Matematika Yunani dan Mesir untuk membangkitkan Matematika Yunani. Kemudian di bawah Kekhalifahan Islam, Mesopotamia, terkhusus Baghdad, sekali lagi menjadi pusat penting pengkajian Matematika Islam.
Bertentangan dengan langkanya sumber pada Matematika Mesir, pengetahuan Matematika Babilonia diturunkan dari lebih daripada 400 lempengan tanah liat yang digali sejak 1850-an. Lempengan ditulis dalam tulisan paku ketika tanah liat masih basah, dan dibakar di dalam tungku atau dijemur di bawah terik matahari. Beberapa di antaranya adalah karya rumahan.
Bukti terdini matematika tertulis adalah karya bangsa Sumeria, yang membangun peradaban kuno di Mesopotamia. Mereka mengembangkan sistem rumit metrologi sejak tahun 3000 SM. Dari kira-kira 2500 SM ke muka, bangsa Sumeria menuliskan tabel perkalian pada lempengan tanah liat dan berurusan dengan latihan-latihan geometri dan soal-soal pembagian. Jejak terdini sistem bilangan Babilonia juga merujuk pada periode ini.
Sebagian besar lempengan tanah liat yang sudah diketahui berasal dari tahun 1800 sampai 1600 SM, dan meliputi topik-topik pecahan, aljabar, persamaan kuadrat dan kubik, dan perhitungan bilangan regular, invers perkalian, dan bilangan prima kembar. Lempengan itu juga meliputi tabel perkalian dan metode penyelesaian persamaan linear dan persamaan kuadrat. Lempengan Babilonia 7289 SM memberikan hampiran bagi √2 yang akurat sampai lima tempat desimal.
Matematika Babilonia ditulis menggunakan sistem bilangan seksagesimal (basis-60). Dari sinilah diturunkannya penggunaan bilangan 60 detik untuk semenit, 60 menit untuk satu jam, dan 360 (60 x 6) derajat untuk satu putaran lingkaran, juga penggunaan detik dan menit pada busur lingkaran yang melambangkan pecahan derajat. Juga, tidak seperti orang Mesir, Yunani, dan Romawi, orang Babilonia memiliki sistem nilai-tempat yang sejati, di mana angka-angka yang dituliskan di lajur lebih kiri menyatakan nilai yang lebih besar, seperti di dalam sistem desimal
Teori Bilangan Pada Suku Bangsa Mesir Kuno
Matematika Mesir merujuk pada matematika yang ditulis di dalam bahasa Mesir. Sejak peradaban helenistik matematika Mesir melebur dengan matematika Yunani dan Babilonia yang membangkitkan Matematika helenistik. Pengkajian matematika di Mesir berlanjut di bawah Khilafah Islam sebagai bagian dari matematika Islam, ketika bahasa Arab menjadi bahasa tertulis bagi kaum terpelajar Mesir.
Tulisan matematika Mesir yang paling panjang adalah Lembaran Rhind (kadang-kadang disebut juga “Lembaran Ahmes” berdasarkan penulisnya), diperkirakan berasal dari tahun 1650 SM tetapi mungkin lembaran itu adalah salinan dari dokumen yang lebih tua dari Kerajaan Tengah yaitu dari tahun 2000-1800 SM. Lembaran itu adalah manual instruksi bagi pelajar aritmetika dan geometri. Selain memberikan rumus-rumus luas dan cara-cara perkalian, pembagian, dan pengerjaan pecahan, lembaran itu juga menjadi bukti bagi pengetahuan matematika lainnya, termasuk bilangan komposit dan prima; rata-rata aritmetika, geometri, dan harmonik; dan pemahaman sederhana Saringan Eratosthenes dan teori bilangan sempurna (yaitu, bilangan 6). Lembaran itu juga berisi cara menyelesaikan persamaan linear orde satu juga barisan aritmetika dan geometri.
Naskah matematika Mesir penting lainnya adalah lembaran Moskwa, juga dari zaman Kerajaan Pertengahan, bertarikh kira-kira 1890 SM. Naskah ini berisikan soal kata atau soal cerita, yang barangkali ditujukan sebagai hiburan.
Teori Bilangan Pada Suku Bangsa India
Sulba Sutras (kira-kira 800–500 SM) merupakan tulisan-tulisan geometri yang menggunakan bilangan irasional, bilangan prima, aturan tiga dan akar kubik; menghitung akar kuadrat dari 2 sampai sebagian dari seratus ribuan; memberikan metode konstruksi lingkaran yang luasnya menghampiri persegi yang diberikan, menyelesaikan persamaan linear dan kuadrat; mengembangkan tripel Pythagoras secara aljabar, dan memberikan pernyataan dan bukti numerik untuk teorema Pythagoras.
Kira-kira abad ke-5 SM merumuskan aturan-aturan tata bahasa Sanskerta menggunakan notasi yang sama dengan notasi matematika modern, dan menggunakan aturan-aturan meta, transformasi, dan rekursi. Pingala (kira-kira abad ke-3 sampai abad pertama SM) di dalam risalah prosodynya menggunakan alat yang bersesuaian dengan sistem bilangan biner. Pembahasannya tentang kombinatorika bersesuaian dengan versi dasar dari teorema binomial. Karya Pingala juga berisi gagasan dasar tentang bilangan Fibonacci.
Pada sekitar abad ke 6 SM, kelompok Pythagoras mengembangkan sifat-sifat bilangan lengkap (perfect number), bilangan bersekawan (amicable number), bilangan prima (prime number), bilangan segitiga (triangular number), bilangan bujur sangkar (square number), bilangan segilima (pentagonal number) serta bilangan-bilangan segibanyak (figurate numbers) yang lain. Salah satu sifat bilangan segitiga yang terkenal sampai sekarang disebut triple Pythagoras, yaitu : a.a + b.b = c.c yang ditemukannya melalui perhitungan luas daerah bujur sangkar yang sisi-sisinya merupakan sisi-sisi dari segitiga siku-siku dengan sisi miring (hypotenosa) adalah c, dan sisi yang lain adalah a dan b. Hasil kajian yang lain yang sangat popular sampai sekarang adalah pembedaan bilangan prima dan bilangan komposit. Bilangan prima adalah bilangan bulat positif lebih dari satu yang tidak memiliki Faktor positif kecuali 1 dan bilangan itu sendiri. Bilangan positif selain satu dan selain bilangan prima disebut bilangan komposit. Catatan sejarah menunjukkan bahwa masalah tentang bilangan prima telah menarik perhatian matematikawan selama ribuan tahun, terutama yang berkaitan dengan berapa banyaknya bilangan prima dan bagaimana rumus yang dapat digunakan untuk mencari dan membuat daftar bilangan prima.
Dengan berkembangnya sistem numerasi, berkembang pula cara atau prosedur aritmetis untuk landasan kerja, terutama untuk menjawab permasalahan umum, melalui langkah-langkah tertentu, yang jelas yang disebut dengan algoritma. Awal dari algoritma dikerjakan oleh Euclid. Pada sekitar abad 4 S.M, Euclid mengembangkan konsep-konsep dasar geometri dan teori bilangan. Buku Euclid yang ke VII memuat suatu algoritma untuk mencari Faktor Persekutuan Terbesar dari dua bilangan bulat positif dengan menggunakan suatu teknik atau prosedur yang efisien, melalui sejumlah langkah yang terhingga. Kata algoritma berasal dari algorism. Pada zaman Euclid, istilah ini belum dikenal. Kata Algorism bersumber dari nama seorang muslim dan penulis buku terkenal pada tahun 825 M., yaitu Abu Ja’far Muhammed ibn Musa Al-Khowarizmi. Bagian akhir dari namanya (Al-Khowarizmi), mengilhami lahirnya istilah Algorism. Istilah algoritma masuk kosakata kebanyakan orang pada saat awal revolusi komputer, yaitu akhir tahun 1950.
Pada abad ke 3 S.M., perkembangan teori bilangan ditandai oleh hasil kerja Erathosthenes, yang sekarang terkenal dengan nama Saringan Erastosthenes (The Sieve of Erastosthenes). Dalam enam abad berikutnya, Diopanthus menerbitkan buku yang bernama Arithmetika, yang membahas penyelesaian persamaan didalam bilangan bulat dan bilangan rasional, dalam bentuk lambang (bukan bentuk/bangun geometris seperti yang dikembangkan oleh Euclid). Dengan kerja bentuk lambang ini, Diopanthus disebut sebagai salah satu pendiri aljabar.
Teori Bilangan Pada Masa Sejarah (Masehi)
Awal kebangkitan teori bilangan modern dipelopori oleh Pierre de Fermat (1601-1665), Leonhard Euler (1707-1783), J.L Lagrange (1736-1813), A.M. Legendre (1752-1833), Dirichlet (1805-1859), Dedekind (1831-1916), Riemann (1826-1866), Giussepe Peano (1858-1932), Poisson (1866-1962), dan Hadamard (1865-1963). Sebagai seorang pangeran matematika, Gauss begitu terpesona terhadap keindahan dan kecantikan teori bilangan, dan untuk melukiskannya, ia menyebut teori bilangan sebagai the queen of mathematics.
Pada masa ini, teori bilangan tidak hanya berkembang sebatas konsep, tapi juga banyak diaplikasikan dalam berbagai bidang ilmu pengetahuan dan teknologi. Hal ini dapat dilihat pada pemanfaatan konsep bilangan dalam metode kode baris, kriptografi, komputer, dan lain sebagainya.
c. Sejarah Angka Nol
Angka nol diperkenalkan sebagai bilangan dan sebagai symbol untuk mengisi ruang kosong pertama kali oleh al-Khwarizmi. Nol(0) yang dalam bahasa inggris zero yang dapat diartikan pula empty atau kosong.
Sekitar tahun 300 SM orang babilonia telah memulai penggunaan dua buah garis miring( // ) untuk menunjukkan sebuah tempat kosong, sebuah kolom kosong pada Abakus. Simbol ini memudahkan seseorang untuk menentukan letak sebuah symbol. Angka nol sangat berguna dan merupakan simbol yang menggambarkan sebuah tempat kosong dalam Abakus, sebuah kolom dengan batu-batu yang ditempatkan di dasar. Kegunaannya hanya untuk memastikan bahwa butiran-butiran tersebut berada di tempat yang tepat, angka nol tidak memiliki nilai numeric tersendiri.
Pada komputer nol ini dapat merusak sistem, karena nol diartikan tidak ada. Berapapun bilangan dikalikan dengan nol hasilnya tidak ada. Nah inilah yang membuat bingung dalam operasi perhitungan. Perhatikan contoh ini :
0 = 0 ( nol sama dengan nol, benar)
0 x 3 = 0 x 89 (nol sama-sama dikalikan dengan sebuah bilangan, karena juga akan bernilai nol)
(0 x 3)/0= (0 x 89)/0 (sebuah bilangan dibagi dengan bilangan yang sama, akan bernilai satu)
3 = 89 (???, hasil ini yang membuat bingung)
Angka nol berbenturan dengan salah satu prinsip utama filsafat barat, sebuah dictum yang akar-akarnya terhujam dalam filsafat angka Phythagoras dan nilai pentingnya tumbuh dari paradoks Zeno. seluruh cosmos Yunani didirikan di atas pilar: tak ada kekosongan. Kosmos Yunani yang dis=ciptakan oleh Phytagoras, Aristoteles dan Ptolemeus masih lama bertahan himpunanelah keruntuhan peradaban Yunani. Dalam kosmos ini tak ada ketiadaaan. Oleh karena itu, hampir sepanjang dua milinium orang-orang barat tak bersedia menerima angka nol. Konsekuensinya sungguh menakutkan. Ketiadaan angka nol menghambat perkembangan matematika, menghalangi inovasi sains dan yang lebih berbahaya, mengacaukan sistem penanggalan.
>> Pengertian teori bilangan
Secara tradisional, teori bilangan adalah cabang dari matematika murni yang mempelajari sifat-sifat bilangan bulat dan mengandung berbagai masalah terbuka yang dapat mudah mengerti sekalipun bukan oleh ahli matematika.
Dalam teori bilangan dasar, bilangan bulat dipelajari tanpa menggunakan teknik dari area matematika lainnya. Pertanyaan tentang sifat dapat dibagi, algoritma Euklidean untuk menghitung faktor persekutuan terbesar, faktorisasi bilangan bulat dalam bilangan prima, penelitian tentang bilangan sempurna dan kongruensi dipelajari di sini.
Pernyataan dasarnya adalah teorema kecil Fermat dan teorema Euler. Juga teorema sisa Tiongkok dan hukum keresiprokalan kuadrat. Sifat dari fungsi multiplikatif seperti fungsi Möbius dan fungsi phi Euler juga dipelajari. Demikian pula barisan bilangan bulat seperti faktorial dan bilangan Fibonacci.
Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks.
Prosedur-prosedur tertentu yang mengambil bilangan sebagai masukan dan menghasil bilangan lainnya sebagai keluran, disebut sebagai operasi numeris. Operasi uner mengambil satu masukan bilangan dan menghasilkan satu keluaran bilangan. Operasi yang lebih umumnya ditemukan adalah operasi biner, yang mengambil dua bilangan sebagai masukan dan menghasilkan satu bilangan sebagai keluaran. Contoh operasi biner adalah penjumlahan, pengurangan, perkalian, pembagian, dan perpangkatan. Bidang matematika yang mengkaji operasi numeris disebut sebagai aritmetika.]
1. Angka, bilangan dan nomor
Dalam penggunaan sehari-hari, angka dan bilangan dan nomor seringkali disamakan. Secara definisi, angka, bilangan, dan nomor merupakan tiga entitas yang berbeda.
Angka adalah suatu tanda atau lambang yang digunakan untuk melambangkan bilangan. Contohnya, bilangan lima dapat dilambangkan menggunakan angka Hindu-Arab “5″ (sistem angka berbasis 10), “101″ (sistem angka biner), maupun menggunakan angka Romawi ‘V’. Lambang “5″, “1″, “0″, dan “V” yang digunakan untuk melambangkan bilangan lima disebut sebagai angka.
Nomor biasanya menunjuk pada satu atau lebih angka yang melambangkan sebuah bilangan bulat dalam suatu barisan bilangan-bilangan bulat yang berurutan. Misalnya kata ‘nomor 3′ menunjuk salah satu posisi urutan dalam barisan bilangan-bilangan 1, 2, 3, 4, …, dst. Kata “nomor” sangat erat terkait dengan pengertian urutan.
2. Jenis bilangan – bilangan sederhana
Ada berbagai jenis bilangan. Bilangan-bilangan yang paling dikenal adalah bilangan bulat 0, 1, -1, 2, -2, … dan bilangan-bilangan asli 1, 2, 3, …, keduanya sering digunakan untuk berhitung dalam aritmatika. Bilangan cacah adalah himpunan bilangan bulat yang tidak negatif, yaitu {0, 1, 2, 3 …}. Dengan kata lain himpunan bilangan asli ditambah 0. Jadi, bilangan cacah harus bertanda positif. Himpunan semua bilangan bulat dalam buku-buku teks aljabar biasanya dinyatakan dengan lambang Z dan sedangkan himpunan semua bilangan asli biasanya dinyatakan dengan lambang N.
Setiap bentuk rasio p/q antara dua bilangan bulat p dan bilangan bulat tak nol q disebut bilangan rasional atau pecahan. Himpunan semua bilangan rasional ditandai dengan Q.
3. Konsep Hingga terhitung dan tak terhitung
Unsur-unsur ketiga himpunan N, Z dan Q di atas masih bisa ‘diurutkan’ (enumerated) tanpa ada satu pun yg tersisa atau tercecer. Himpunan berukuran tak hingga yg bisa diurutkan ini disebut himpunan terhitung (Inggris: countable atau denumerable).
Himpunan semua bilangan alami (real numbers), yaitu semua bilangan rasional digabung dengan semua bilangan tak rasional (atau irasional), dinyatakan dengan lambang R. Himpunan ini selain berukuran tak hingga, juga himpunan tak terhitung sebab bisa dibuktikan secara matematis, setiap usaha untuk mengurutkannya selalu gagal, karena menyisakan bilangan alami.
Silakan baca http://planetmath.org/encyclopedia/CantorsDiagonalArgument.html untuk contoh pembuktian di atas. Fakta ini menjadi titik awal untuk membedakan dua konsep tak hingga dalam matematika: tak hingga terhitung dan tak hingga tak terhitung.
Untuk contoh bagaimana matematikawan mendefinisikan bilangan melalui berbagai aksioma, lihat struktur abstrak, bilangan asli atau universal.
4. Benda apakah sebuah bilangan itu ??
Setiap bilangan, misalnya bilangan yang dilambangkan dengan angka 1, sesungguhnya adalah konsep abstrak yang tak bisa tertangkap oleh indera manusia, tetapi bersifat universal. Misalnya, tulisan atau ketikan
1yang terlihat di layar monitor dan Anda baca saat ini bukanlah bilangan 1, melainkan hanya lambang dari bilangan 1 yang tertangkap oleh indera penglihatan Anda berkat keberadaan unsur-unsur kimia yang peka cahaya dan digunakan untuk menampilkan warna dan gambar di layar monitor.
Demikian pula jika Anda melihat lambang yang sama di papan tulis, yang Anda lihat bukanlah bilangan 1, melainkan serbuk dari kapur tulis yang melambangkan bilangan 1.
Teori bilangan pada saat ini jauh lebih kompleks daripada sekedar aritmatika dan aplikasinya lebih banyak pada berbagai ilmu dan teknologi mutakhir, misalnya pada kriptografi. Silakan Anda dapat membaca contoh isi mata kuliah teori bilangan dalam link ini : http://modular.fas.harvard.edu/edu/Fall2001/124/ Perlu diketahui, masalah dalam teori bilangan yang dikenal dengan Teorema Terakhir Fermat baru bisa dipecahkan setelah berumur ratusan tahun.

Next Prev home
Selamat datang di math3mania.blogspot.com. Anda juga bisa follow twitter kami di @math3mania atau like fanspagenya di facebook.com/math3mania. Terima kasih sudah berkunjung...